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INTRODUCTION

PROBLEM FORMULATION

SIMULATION AND RESULTS   CONCLUSION

• We consider the problem of binary
hypothesis testing in a sensor network
consisting of heterogeneous sensors
collecting correlated data. The data is
assumed to be correlated over time as well
as among the sensors. Moreover, it is
assumed that the complete set of statistical
parameters of the data collected by the
sensors is not available.

• We propose a method based on the
expectation maximization (EM) algorithm to
estimate the unknown parameters and to
detect the state of nature.

• An illustrative example is presented with the
Gaussian copula and where a first order
auto-regressive model is employed to
establish the dependence over time
samples.

• Numerical results show that when the
dependence among the sensors' data and
among the samples from each sensor are
employed in the model, a significantly better
performance in terms of hypothesis
detection as well as model parameter
estimation is achieved.
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ABSTRACT

THE PROPOSED ALGORITHM

• There are L heterogeneous sensors.
• Each sensor collects data from nature at times t=1:T.
• Data are sent to the fusion center (FC) forming the matrix D.
• The sensors’ data are assumed to be correlated.
• Given D, the FC estimates unknown parameters of the joint

distribution of sensors’ data and detects the state of nature.
• The state of nature at each time t is 𝐻𝑖, 𝑖 = 0,1.
• We define the matrix, 𝐻 ≜ [ℎ𝑖,𝑡], ℎ𝑖,𝑡= 1 if 𝐻𝑖 holds at time 𝑡.

• If ℎ𝑖,𝑡= ℎ𝑖,𝑡−1, 𝑑𝑙,𝑡 is correlated with 𝑑𝑙,𝑡−1.

• If ℎ𝑖,𝑡≠ ℎ𝑖,𝑡−1, 𝑑𝑙,𝑡 and 𝑑𝑙,𝑡−1 are independent.

SYSTEM MODEL

Markov chain model modeling correlation over time when it exists.
Copula theory modeling the correlation among measurements of different sensors.
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• 𝑐𝑗(𝒙; 𝜆𝑗,𝑖): copula density with unknown parameter 𝜆𝑗,𝑖, 𝑗 = 1 accounts for when the data samples are not

correlated over time, 𝑗 = 2 accounts for when the data samples are correlated over time.

The EM algorithm is used to find ෡Θ.
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Where 𝛼1 𝑖, 𝑡 ≜ 𝐸𝐻|𝐷;Θ𝑜𝑙𝑑 ℎ𝑖,𝑡ℎ1−𝑖,𝑡−1 , 𝛼2 𝑖, 𝑡 ≜ 𝐸𝐻|𝐷;Θ𝑜𝑙𝑑 ℎ𝑖,𝑡ℎ𝑖,𝑡−1 .
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Case Study: Gaussian Copula, first order Auto-Regressive (AR1) model
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and 𝑇𝑟 denotes matrix transpose.

This paper considers the problem of parameter estimation and hypothesis
detection based on a network of heterogeneous sensors. The data is assumed
to be correlated both among the samples collected over time and among the
data collected by different sensors. We model the correlation in the data
based on the copula theory and a Markov chain. The proposed algorithm uses
the EM algorithm to estimate the unknown parameters of
the model and detect the state of nature. Numerical results show significant
improvement in detection and estimation performances when the correlation
in the data is considered.

Initialization: ෨𝜙𝑖,𝑗,𝑡 = .25, 𝜆𝑗,𝑖 = 𝐼𝐿 , and the initial values of 𝜓𝑖
(𝑙)

are obtained from the unsupervised method of K-means.

Convergence: in less than 5 iterations.
Comparison:

Case 1:  Proposed model, considering the dependence both among the sensors and over time samples.
Case 2: Dependence in the data collected by different sensors is modeled but dependence in the samples collected over time is ignored.
Case 3: Dependence in the data collected by different sensors is ignored but dependence in the samples collected over time is modeled.
Case 4: From right to left, Δ𝐻 , ΔΛ, ΔΨ, and execution time Dependence both among the sensors and over time samples are ignored.
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Discussion:
• Case 1 has significantly lower detection and parameter estimation error and this improvement increases as the number of sensors increase.
• As T increases, estimation error decreases but since the number of hypotheses to be detected is T, the detection error reaches a floor.
• For a larger L, a larger T is required to achieve the best possible detection performance that the proposed algorithm can offer.
• The performance of Case 2 (blue curves) is worse than the performance of Case 4 (red curves). Thus, if the data are correlated over time and among

the sensors (as is in many practical applications), then ignoring the dependence over time and only modeling the dependence among the sensors,
results in a worse performance than ignoring the dependencies all together.

Fig. 1: Pictorial description of problem formulation

Fig. 2: Estimation and detection performances; from left to right, Δ𝐻 , ΔΛ, ΔΨ, and execution time versus T for Case 1-4. Top row: four sensors, L=4. Bottom row: eight sensors, L=8. 

In this paper we consider detection in a heterogeneous sensor network. Many approaches to data fusion assume that, given each
hypothesis, the sensors’ local measurements are conditionally independent. However, in most practical cases this assumption
fails as the data collected by the sensors are correlated over time, as well as among the sensors. Recently, in [1],[2], the copula
theory was used to model the correlation among sensors’ decisions. But the observation samples of each sensor were assumed
to be independent and identically distributed (iid) over time.
In this study, we assume that the data received from the sensors are correlated not only among the sensors, but also over time.
We devise a model based on the copula theory and Markov chains to model the correlation in the. Next, we develop a method
based on the expectation maximization (EM) algorithm to estimate the unknown parameters of the underlying joint and marginal
PDFs, and to detect the hypotheses at each time.


