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ABSTRACT INTRODUCTION

This paper considers the problem of parameter estimation and hypothesis In this paper we consider detection in a heterogeneous sensor network. Many approaches to data fusion assume that, given each
detection based on a network of heterogeneous sensors. The data is assumed hypothesis, the sensors’ local measurements are conditionally independent. However, in most practical cases this assumption
to be correlated both among the samples collected over time and among the fails as the data collected by the sensors are correlated over time, as well as among the sensors. Recently, in [1],[2], the copula
data collected by different sensors. We model the correlation in the data theory was used to model the correlation among sensors’ decisions. But the observation samples of each sensor were assumed
based on the copula theory and a Markov chain. The proposed algorithm uses || to be independent and identically distributed (iid) over time.

the EM algorithm to estimate the unknown parameters of In this study, we assume that the data received from the sensors are correlated not only among the sensors, but also over time.
the model and detect the state of nature. Numerical results show significant We devise a model based on the copula theory and Markov chains to model the correlation in the. Next, we develop a method
improvement in detection and estimation performances when the correlation based on the expectation maximization (EM) algorithm to estimate the unknown parameters of the underlying joint and marginal
in the data is considered. PDFs, and to detect the hypotheses at each time.

THE PROPOSED ALGORITHM
The EM algorithm is used to find ©.
The E-step:
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PROBLEM FORMULATION

 There are L heterogeneous sensors.

e Each sensor collects data from nature at times t=1:T.

e Data are sent to the fusion center (FC) forming the matrix D.

* The sensors’ data are assumed to be correlated.

 Given D, the FC estimates unknown parameters of the joint
distribution of sensors’ data and detects the state of nature.
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¢j(x; 4;;): copula density with unknown parameter 4;;, j = 1 accounts for when the data samples are not l ‘

: : . and Tr denotes matrix transpose.
correlated over time, j = 2 accounts for when the data samples are correlated over time.

SIMULATION AND RESULTS CONCLUSION

Initialization: Q:Bi,j,t = .25, /1]:,1- = {L, and the initial values of l/)i(l)are obtained from the unsupervised method of K-means. + We consider the problem of binary
Convergence: in less than 5 iterations. hypothesis testing in a sensor network
Comparison: consisting of heterogeneous sensors

Case 1: Proposed model, considering the dependence both among the sensors and over time samples.

Case 2: Dependence in the data collected by different sensors is modeled but dependence in the samples collected over time is ignored.
Case 3: Dependence in the data collected by different sensors is ignored but dependence in the samples collected over time is modeled.
Case4: Fromrightto left, Ay, As, Ay, and execution time Dependence both among the sensors and over time samples are ignored.

collecting correlated data. The data is
assumed to be correlated over time as well
as among the sensors. Moreover, it is
assumed that the complete set of statistical
P 1wy w1 w2 -3 parameters of the data collected by the
p® 7 TAT 42 j=12i=0 2n=1 Aji(n) sensors is not available.

We propose a method based on the
expectation maximization (EM) algorithm to
estimate the unknown parameters and to
detect the state of nature.

An illustrative example is presented with the
Gaussian copula and where a first order

auto-regressive model is employed to
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Numerical results show that when the

dependence among the sensors' data and
among the samples from each sensor are
employed in the model, a significantly better
performance in terms of hypothesis
detection as well as model parameter

: . . 1
Evaluation Criterion: detection error: Ay pm

- o 1
1 Zz::l‘hi,t — hi,t‘ , estimation error: Ay — N 3 ‘

Discussion:

 Case 1 has significantly lower detection and parameter estimation error and this improvement increases as the number of sensors increase.

 As T increases, estimation error decreases but since the number of hypotheses to be detected is T, the detection error reaches a floor.

 Foralargerl, alargerTis required to achieve the best possible detection performance that the proposed algorithm can offer.

* The performance of Case 2 (blue curves) is worse than the performance of Case 4 (red curves). Thus, if the data are correlated over time and among .
the sensors (as is in many practical applications), then ignoring the dependence over time and only modeling the dependence among the sensors,
results in a worse performance than ignoring the dependencies all together.
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Fig. 2: Estimation and detection performances; from left to right, Ay, Aj, Ay, and execution time versus T for Case 1-4. Top row: four sensors, L=4. Bottom row: eight sensors, L=8.




