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Goals
1. Model current transport in novel smart 
tunneling transistors from atomically thin 
two dimensional (2D) materials for:
- Operates at low supply voltage (~ 0.1V)
- THz operation and fs delay
2. Incorporate models for circuit 
simulations.

The Moore’s law of scaling of metal oxide
field effect transistors (MOSFET) resulted an
unprecedented advancement in technology
over the last five decades, until recently chips
are now down for Moore’s law.

Fig. 1. MOSFET scaling trend and transport phenomena

Quantum mechanical band to band
tunneling transport overcomes fundamental
physical limit of MOSFET for supply voltage
scaling, resulting energy efficient smart
transistor technology.
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Fig. 2. Quantum tunneling transport phenomena in FET
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MoS2-hBN-MoS2 Junctionless Tunnel Effect Transistor

Graphene-hBN-Graphene Junctionless Tunnel Effect Transistor

Fig. 4. Junctionless tunnel effect transistor: device structure, current transport, charge induced barrier control 
mechanism and high speed performance at ultra-low delay operation

Fig. 5. Junctionless graphene tunnel effect transistor with steep subthreshold slope operation

Graphene and Silicene Nanoribbon Tunnel Effect Transistor

Process flow for incorporating compact models into circuit simulators
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Fig. 7. Compact models
of smart transistors
based memory circuit
design using Verilog-A in
SPICE environment and
performance evaluation
and benchmarking.

Summary

 Energy efficient next generation smart transistors are studied from 
physics based compact models to their circuit level simulations.

 Promise of alternative current transport mechanism has been 
explored providing steeper sub-threshold slope than conventional 
planer TFET

 With continuous scaling of technology node following the Moore’s 
law, energy efficient smart transistors are the demand of time.

 Compact model advances significant understanding from circuit 
design perspective.
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Fig. 6. Quantum transport simulation of graphene and silicene nanoribbon tunnel field effect transistor

Features:
- Gate induced interlayer tunneling between two MoS2

layers separated by hBN changes channel charge density.
- Interlayer tunneling controls the source-drain ballistic 

transport.
- Energy efficient high speed THz operation.

Features:
- Tunneling between two graphene layers 
separated by hBN.
- Low supply voltage operation
- Steep subthreshold slope 
- Current ratio of 104 with mA range On-

current 

Features:
- Width tuable energy band gap in 

graphene and silicene
nanoribbon.

- Suitable for logic application.
- High mobility, high on/off current 

ratio and ultra-low power (pW) 
operation

Features:
- Verilog-A simulated devices 

matches both physics based 
compact models and numerical 
simulations

- High read and write noise margins.
- Competitive performance than 

conventional FinFET and Si/Ge 
TFET

Fig. 3. From material 
modeling to circuit design
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