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• Genome sequencing: The process of chemically parsing nucleotides in a DNA
• Current sequencing machines cannot sequence the entire genome at one go.
• Solution: 

• Replicate the genome many times over,
• break it into shorter segments (called short-reads), 
• sequence the shorter segments at random.

• Rationale: A high probability that these shorter segments will overlap
• Find these overlaps and you get the original genome

ABSTRACT MOTIVATION
Genome sequencing technology has witnessed tremendous progress both in terms of
throughput as well as the cost per base pair. However, when it comes to sequence
assembly, there still exists a dilemma in the state-of-the-art technology. On one
hand, we have a number of distributed assemblers that can utilize several nodes but
require massive amounts of memory. On the other hand, there are a few assemblers
that can assemble mammalian genomes on a single node but cannot scale up. In this
work, we present a distributed assembler that is both scalable and memory efficient.
Using partitioned de Bruijn graphs we enhance memory-to-disk swapping and
reduce network communication in the cluster. Experimental results show that our
framework can assemble a human genome dataset (452GB) in 14.5 hours using two
nodes and 23 minutes using 128 nodes.

BACKGROUND

The assembly pipeline consists of three phases:
1. Map:

1. read parts of the input from a distributed file system, 
2. parse them into k-mers, and 
3. map these k-mers into local partitions.

2. Reduce:
1. Load Balancing: count all intermediate key-value pairs in all the 

machines
2. Fairly distribute the L1 partitions to reducers (Longest Processing Time)
3. Reducers merge different values for same keys and compress the chains 

that exist locally.
3. Compression:

1. Load the vertices in a distributed hash-map
2. Traverse the linear chains to produce contigs

IMPLEMENTATION

CONCLUSIONS & FUTURE WORK
We introduced a distributed assembly framework that utilizes a smart partitioning 
scheme for de Bruijn graphs to achieve both scalability and memory efficiency. 
Experimental results show that our framework significantly reduces the memory 
footprint while ensuring fast assembly. 
In future, we plan to enhance our framework with contig extension and scaffolding to 
create a full pipeline.
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• Next Generation Sequencers: 
• High throughput, 
• High coverage,
• Low cost

• Illumina HiSeq: 3 billion reads per run at 0.15 per million bases.
• Consequence: Genome assembly is becoming more and more demanding both 

in terms of memory and processing power.
• Problem: Most of the assemblers are either scalable, or memory efficient but not 

both.
• Examples:

• Minia[2]: Uses bloom filters– memory efficient but not distributed.
• ABySS[6], Ray[1]: Distributed but not scalable
• SWAP[5]: fast and highly scalable, but enormous memory footprint.

• Our motivation: To build a distributed, scalable and memory-efficient assembler
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• De novo assembly: reconstructing the genome without references.
• Break down short-reads into smaller overlapping sub-sequences of size k (k-mers). 
• Build a de Bruijn graph using the following rules:

• Each unique k-mer is represented as a vertex in the de Bruijn Graph.
• An edge exists between two vertices if their corresponding k-mers have an 

overlap of k -1 characters between them.
• Compress the linear chains in the graph.

METHODOLOGY

• Both scalability and memory efficiency can be achieved with partitioned graphs
• Avoid loading entire graph into memory at once
• Each partition can be processed independently – more parallelism

• We use minimum substring partitioning[4]
• Slide a smaller window over the k-mers to obtain a set of substrings
• A k-mer is hashed on the basis of the alphabetically smallest substring.

• Built on top of ZeroMQ (http://zeromq.org/) - an embeddable framework for 
concurrency and communication.

• Provides a threading library based on Hewitt's Actor Model [3].
• No global state – all actor interactions through atomic message passing.
• No locks, semaphores or critical sections – ideal for building distributed systems. 
• Provides an intelligent transport layer for low latency transmission of small packets.
• Ideal for the fine-grained parallelism required in graph compression.
• Also provides an uniform message passing semantics between actors (inproc), 

processes (ipc) and boxes (tcp). 

EVALUATION

• Experimental test-bed: QueenBee II
• Two 10-core 2.8 GHz E5-2680v2 Xeon processors
• 64GB memory per node
• 250 GB scratch space per node
• Access to Lustre file system
• 56 Gb/sec (FDR) InfiniBand 2:1 oversubscribed mesh

• Evaluated Lazer, Swap, and Ray using the Yoruban male dataset (Accession 
#SRA000271) with 452GB of raw reads
• Tests on 2 nodes all the way up to 128 nodes
• Observed near linear scalability

Since a manager and its workers reside in the same address space, they can connect to each other 
via inproc protocol. Message transmission over inproc is faster than both tcp and ipc, and 
involves less memory-copying since it allows passing pointers. The node-managers connect to the 
master via tcp. the size of the substring is 9 and that of k is 17, thus there are 49 L1 partitions and 9 L2 partitions per L1 

partition. The next figure explains the local compression of an L1 partition. The compression begins 
with the vertices in L2 partition Pi8 as seeds. The vertices in Pi7 are loaded in a hash-map, merged with 
the seeds and removed from map. This process continues until the vertices of all 9 L2 partitions are 
merged.

We also evaluated our assembler on hexaploid wheat genome (Synthetic W7984) 
having 1.1 TB of error corrected sequences.. The figure alongside reports the 
preliminary results along with the breakdown of the different phases.
We haven’t been able to successfully run the other assemblers on this dataset, so we 
are unable to provide a comparative analysis yet.

We were not able to run SWAP on 32 nodes due to out-of-memory errors. Furthermore, we could 
not run Ray on all the configurations due to cluster wall-clock limitations. We also observed that 
Ray’s performance starts degrading beyond 64 nodes.

• To reduce the memory footprint even further we propose a 2-level partitioning 
scheme

• The first level (L1) partition of a k-mer is determined by its minimum 
substring.

• The second level (L2) is determined by the substring’s position within 
the k-mer.

• This ensures that during an L1 compression, at most two L2 partitions have to 
be in memory at once

• The following figure shows the overview of the architecture used. 
• A single master process which is responsible for the distribution of tasks, 

synchronization between nodes and load-balancing. 
• Each node runs a slave process consisting of a Node-manager actor which 

spawns and manages worker actors. 
• All processes have access to a distributed file system and can send/receive 

messages to/from each other via a high speed network.
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