
Storage in the Cloud Era

Cloud Storage vs. Conventional Storage

• Unlike prior work that focuses on cloud storage providers and
specific cloud storage clients, we present a comprehensive
measurement of cloud storage from a client’s perspective.

• Through controlled comparisons and quantitative analysis, we
obtain several interesting and useful findings and system
implications for optimizing user experiences.

• We further present a case study to illustrate how to improve
user experiences by understanding cloud I/O performance
behaviors of cloud storage in practical working scenarios.

Case Study: Proper Chunking for Caching

Conclusions

Enterprise Cloud Storage Personal Cloud Storage

• Cloud storage market is predicted to be $74.96 billion by 2021
 http://www.marketsandmarkets.com/Market-Reports/cloud-storage-market-902.html.

Understanding I/O Performance Behaviors of Cloud Storage from a Client’s Perspective

SCSI

Conventional Storage Model

Cloud
Storage
Cluster

Internet

servers

PCs

mobile devices

Cloud Storage Model

Methodology

• Is our past wisdom on storage still applicable?

• What are the effects of parallelism and request size?

• What are the effects of client’s capabilities?

• What are the effects of geographic distance?

• Can we obtain useful system implications based on the findings?

• Characteristics of cloud storage model
• The clients are highly diverse and have different capabilities

 e.g., PCs, servers, and mobile devices

• The connection is world-wide Internet with HTTP-based protocol

• The storage medium is massively parallelized storage cluster

Critical Findings and Implications

• Client-side caching and chunking
• Chunking is a key technology for cloud-based applications

• Small chunk size may lead to high cache miss ratio

• Large chunk size may be risky of loading unwanted data

• How can we determine a proper chunk size?
• Approximation: sampling and inferring based method

• Select a small size that closely reaches peak bandwidth

• Experimental platform

• Emulator: a cloud-based file system with disk cache

• Cloud: Amazon S3 in Oregon

• Client: a workstation on campus

• Trace: concerted from a piece of NFS trace

• Caching replacement policy: standard LRU

• 4MB chunking leads to lowest read/write latencies

• How do chunk sizes affect caching efficiency?
• Increasing request sizes significantly improves hit ratios

• Excessively large request sizes cause performance loss

• Long download latency = high cache miss penalty

Finding #2: Client’s capabilities play an important role in determining user-perceived performance (i.e., CPU is key to parallelizing
small requests, and memory and storage are critical to serving large requests).
Implications: Client-aware optimization is necessary (e.g., smartphones generally have weaker CPUs than workstations, thus
merging small requests can bring more benefits in this case).

CPU: Baseline (2 CPUs) vs. CPU-plus (4 CPUs) Memory: Baseline (7.5 GB GB) vs. MEM-minus (3.5 GB) Storage: Baseline (HDD) vs. MEM-minus (SSD)

Finding #3: A long geographic distance has negative effects but does not necessarily lead to worse performance (e.g., the peak
bandwidth is not significantly affected, the impact of over-parallelization may offset the advantage of a short distance on latency).
Implications: We do not have to always choose closer but maybe more expensive cloud storage services (e.g., for bandwidth-
sensitive applications, properly parallelizing large requests can achieve desirable performance even being far away from the cloud).

Distance: Baseline (Oregon) vs. GEO-Sydney(Sydney) Download latency comparison: 16KB Download latency comparison: 16MB

• Investigating cloud storage as storage services

• Focusing on object-based cloud storage

• Treating cloud storage as a “black-box”

• Avoiding the client-side optimization techniques

• Test workloads
• Request Type: PUT (upload), GET (download)

• Parallelism degree: 1 – 64; Request size: 1KB – 16MB

• Metrics: Bandwidth and Latency

• Test platform
• Cloud: Amazon S3 (the data center in Oregon)

• Clients: customizing five Amazon EC2 instances as clients

• Baseline client: 2 CPUs, 7.5 GB memory, 410 HDD, in Oregon

• Four comparison clients, each has a different factor as Baseline

• Sampling and inferring based method

Sampling
When chunk size exceeds 4MB:
• cannot bring significant benefit
• may load unwanted data

Inferring: Proper chunk size ≈ 4MB

4MB

Bandwidth of different chunk sizes on test client

• Evaluation and Analysis

Read/write latencies with different chunk sizes Hit ratios with different chunk sizes

Finding #1: Either increasing parallelism degree or enlarging request size can improve performance, and optimal performance can
be achieved by properly combining these two factors (e.g., uploading a 4MB object with 16 parallel 256KB requests).
Implications: Reshaping the workloads is effective to improving performance (e.g., chunking large requests to create
parallelization opportunities, merging small requests to increase request size, and properly combining these two techniques).

Upload Bandwidth on Baseline Average Upload Average Latency on Baseline Different Combinations for Uploading a 4MB Object

Binbing Hou, Feng Chen
Division of Computer Science and Engineering, LSU

Ren Wang, Michael Mesnier
Intel Labs

Zhonghong Ou
Beijing Univ. of Posts & Telecomm.

*This work is published in Proceedings of the 32nd International Conference on Massive Storage Systems and Technology (MSST’16), Santa Clara, CA, May 2-6, 2016

• Measurement steps

• Characterizing effects of parallelism and request size

• Investigating client-related factors by controlled comparisons

