Understanding I/O Performance Behaviors of Cloud Storage from a Client's Perspective **Zhonghong Ou Binbing Hou, Feng Chen** Ren Wang, Michael Mesnier

Division of Computer Science and Engineering, LSU

DOX

CODY

Sugar Sync

just cloud

Storage in the Cloud Era

Enterprise Cloud Storage

Personal Cloud Storage

amazon cloud drive

mozy

iCloud

Cloud storage market is predicted to be \$74.96 billion by 2021 http://www.marketsandmarkets.com/Market-Reports/cloud-storage-market-902.html.

Cloud Storage vs. Conventional Storage Conventional Storage Model SCSI **Cloud Storage Model** Internet Cloud Storage Cluster server mobile devices • Characteristics of cloud storage model

- The clients are highly diverse and have different capabilities e.g., PCs, servers, and mobile devices
- The connection is world-wide Internet with HTTP-based protocol
- The storage medium is massively parallelized storage cluster

• Is our past wisdom on storage still applicable?

- What are the effects of parallelism and request size?
- What are the effects of client's capabilities?
- What are the effects of geographic distance?
- Can we obtain useful system implications based on the findings?

- Focusing on object-based cloud storage
- Treating cloud storage as a "black-box"
- Avoiding the client-side optimization techniques
- Test workloads
- Request Type: PUT (upload), GET (download)
- Parallelism degree: 1 64; Request size: 1KB 16MB Metrics: Bandwidth and Latency

Beijing Univ. of Posts & Telecomm.

Methodology

• Investigating cloud storage as storage services

• Test platform

- Cloud: Amazon S3 (the data center in Oregon)
- Clients: customizing five Amazon EC2 instances as clients
- *Baseline* client: 2 CPUs, 7.5 GB memory, 410 HDD, in Oregon
- Four comparison clients, each has a different factor as *Baseline*

• Measurement steps

- Characterizing effects of parallelism and request size
- Investigating client-related factors by controlled comparisons

Finding #1: Either increasing parallelism degree or enlarging request size can improve performance, and optimal performance can be achieved by properly combining these two factors (e.g., uploading a 4MB object with 16 parallel 256KB requests). **Implications:** Reshaping the workloads is effective to improving performance (e.g., chunking large requests to create

parallelization opportunities, merging small requests to increase request size, and properly combining these two techniques).

Memory: Baseline (7.5 GB GB) vs. MEM-minus (3.5 GB)

Finding #2: Client's capabilities play an important role in determining user-perceived performance (i.e., CPU is key to parallelizing small requests, and memory and storage are critical to serving large requests).

Implications: Client-aware optimization is necessary (e.g., smartphones generally have weaker CPUs than workstations, thus merging small requests can bring more benefits in this case).

*This work is published in Proceedings of the 32nd International Conference on Massive Storage Systems and Technology (MSST'16), Santa Clara, CA, May 2-6, 2016

Intel Labs

Case Study: Proper Chunking for Caching

- **Client-side caching and chunking**
- Chunking is a key technology for cloud-based applications
- Small chunk size may lead to high cache miss ratio
- Large chunk size may be risky of loading unwanted data

How can we determine a proper chunk size?

- Approximation: sampling and inferring based method
- Select a small size that closely reaches peak bandwidth

Experimental platform

- Emulator: a cloud-based file system with disk cache
- Cloud: Amazon S3 in Oregon
- Client: a workstation on campus
- Trace: concerted from a piece of NFS trace
- Caching replacement policy: standard LRU

Sampling and inferring based method

Sampling

When chunk size exceeds 4MB:

- cannot bring significant benefit
- may load unwanted data

Inferring: Proper chunk size \approx 4MB

Chunk Size Bandwidth of different chunk sizes on test client

Evaluation and Analysis

Read/write latencies with different chunk sizes

4MB chunking leads to lowest read/write latencies

- How do chunk sizes affect caching efficiency?
- Increasing request sizes significantly improves hit ratios
- Excessively large request sizes cause performance loss
- Long download latency = high cache miss penalty

Conclusions

- Unlike prior work that focuses on cloud storage providers and specific cloud storage clients, we present a comprehensive measurement of cloud storage from a client's perspective.
- Through controlled comparisons and quantitative analysis, we obtain several interesting and useful findings and system implications for optimizing user experiences.
- We further present a case study to illustrate how to improve user experiences by understanding cloud I/O performance behaviors of cloud storage in practical working scenarios.